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SCHIESTEL'S DERIVATION OF THE EPSILON EQUATION AND TWO EQUATION

MODELING OF ROTATING TURBULENCE

ROBERT RUBINSTEIN* AND YE ZHOUt

Abstract. As part of a more general program of developing multiple-scale models of turbulence, Schi-

estel suggested a derivation of the homogeneous part of the dissipation rate transport equation. Schiestel's

approach is generalized to rotating turbulence. The resulting model reproduces the main features observed

in decaying rotating turbulence.

Key words, dissipation rate equation, rotating turbulence, two-equation turbulence models, multiple-

scale turbulence models

Subject classification. Fluid Mechanics

1. Introduction. The dissipation rate transport equation continues to resist systematic derivation,

either from the governing equations or even from statistical closures. Much of the closure-based work is

summarized in [1]; more recent work is summarized in [2]. In many respects, the most successful derivation

of the ¢ transport equation is due to Schiestel [3]. Among the successes of the derivation is a rather good

value Gel : 1.5 and the demonstration that necessarily, C_2 > Gel.

It is well-known that the derivation of the e equation in rotating turbulence encounters additional

difficulties because rotation does not appear explicitly in the exact transport equation for the dissipation

rate. Instead, the effect of rotation is indirect, entering only through quantities like the turbulent time-

scale. In the present work, the e transport equation is treated by combining Schiestel's arguments with the

phenomenology for rotating turbulence of Zhou [4]. The most direct generalization of the argument of [3]

leads to a rotation-sensitized e equation with the same form as the standard e equation, but with an increased

value of C_2; a model of this type was proposed by Okamoto [5]. A simple modification of the argument of

[3] yields instead a model of the form first proposed by Bardina et al [6]. The implications of these models

for decaying rotating turbulence are discussed.

2. Review of Schiestel's derivation. We begin with a split-spectrum model of high Reynolds number

turbulence,

Cn 2 if n < no
(2.1) E(n)

CKe2/3n -5/3 if n > n0

In Eq. (2.1), n0 is the inverse integral scale of turbulence which marks the transition between the inertial

range and the large scales. Eq. (2.1) is a special case of the models introduced in [3] in connection with

multiple-scale turbulence models. This is no more than a schematic model of the actual energy spectrum;

however, as stressed in [3] and [7], to derive a two-equation model, it is essential that the spectrum be
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parametrizedin somesimpleway.UseofamorecomplexmodellikethevonK_rm_nspectrumwouldlead
to essentiallythesameresults.

Denotetheenergyin the inertialrangeby

(2.2)

and the energy in the large scales by

(2.3)

Assume that the spectral descriptors in Eq.

from Eq. (2.2) that

3_ 2/3 -2/3
k = _:c n0

(2.1) are functions of time: c = c(t) and no = a0(t). It follows

(2.4) ]¢ = CK((z-1/3/_02/3_ -- (z2/3/_05/3/_0)

This equation does not lead to the desired c equation directly, because it contains the new unknown k0.

To solve this problem, we postulate

(2.5) ko = -_E(_o)

based on a very similar proposal in [3]. In view of Eq. (2.1), Eq. (2.5) is equivalent to

(2.6)

Then Eqs. (2.4)-(2.6) give

(2.7)

which can be re-arranged as

(2.8)

with a rather good value for Gel

essentially Eq. (27) of [3].

ko/_o= -_Z_/k

3 Cp _ c2_=_ - (1+/_)_-

and a value for Ce2 which depends on the choice of/_. This result is

Following Reynolds [8], the constant/_ can be fixed by appealing to the behavior of the large scales of

motion during decay. Differentiation of Eq. (2.3) gives

(2.9) ]_o = 3k_o
ko no

and differentiation of Eq. (2.2) gives

]_ 2_ 2 ko

(2.10) k 3 c 3 no

Assuming that decay is self-similar, so that

/_ ko
(2.11) k - k0

Eqs. (2.9)-(2.11) lead as usual to

(2.12) _ _ 11e
c 6k



corresponding,in Eq. (2.8),to fl = 2/9.

It would seem that this argument solves the problem of deriving the homogeneous e transport equation,

since it gives the values C_I = 3/2 and C_2 = 11/6. But one can object that the assumption Eq. (2.6) is

another way of stating the final result: this equation states that the integral scale B;O1 satisfies a transport

equation in which the production term is absent. Indeed, writing

d k 3/2 3 k 1/2 _ k 3/2 .
dt e -2 e e2 e(2.13)

and substituting

(2.14)

leads to

_zp-([

e P C_2e]
z _[Ce 1 -

d k3/2 3 _1/2 3
--Gel) _-P "_ (Ce2 -- 2)]¢1/2(2.15) dt _ - (2

which shows that the absence of a production term in the length-scale transport equation is equivalent to

C_I = 3/2.

The injection of energy at large scales can certainly cause the integral scale to increase; at the same time,

turbulence production might be expected to it to decrease through the enhancement of small scales. Eq.

(2.5) states the dominance of the first process over the second. Although the validity of this approximation

is uncertain, the success of the argument is undeniable, and it seems reasonable to ask what conclusions will

result if the same argument is applied to another problem.

3. Rotating turbulence. To derive an e equation for rotating turbulence, we will combine the argu-

ments of the previous section with Zhou's phenomenological model of rotating turbulence [4]. Briefly, this

model postulates that strong rotation replaces the nonlinear time scale k/e by the inverse rotation rate f_-l;

closure theories lead to

(3.1) e _ tc4TE(t¢) 2

where by hypothesis, T o( _-_-1, hence

(3.2) = -2

For notational simplicity, f_ will denote twice the absolute value of the rotation rate throughout.

Adding a model for the large scales, we obtain the analog of the split-spectrum model of Eq. (2.1) for

rotating turbulence,

C_ 2 if _ < n0(3.3) E(t¢) = C_v/_t¢ -2 if t¢ > too

Again, we have the energy of the large scales,

(3.4) k0 = _C_g

and the inertial range energy

(3.5) _ = C_/£V_B;O 1



Note that the definition of the integral scale implied by Eq. (3.5) differs from the non-rotating result Eq.

(2.2).

Following Schiestel, we differentiate Eq. (3.5) to obtain

(3.6) ]_ _ 1 _ /_0
k 2 e no

As before, we must specify an equation for the inverse integral scale n0 in order to complete the model.

The simplest possibility is to retain Eq. (2.5). In this case, substitution of the rotation-modified spectrum

Eq. (3.2) again leads to Eq. (2.6), but with a new constant of proportionality,

(3.7) --

Following the previous steps, we find instead of Eq. (2.8)

_26

(3.8) _ = 2kP- (2 + 27)_-

with the definite prediction that C_1 = 2 and C_2 > 2.

The constant 7 can be evaluated by assuming that the constant /3 in Eq. (2.5) is independent of

rotation. Tentatively accepting the non-rotating result /3 = 2/9 suggested earlier, Eq. (2.5) with the

rotation-dependent energy spectrum Eq. (3.2) leads to 7 = 2/9 and to the value C_2 = 22/9. In decaying

rotating turbulence, Eq. (3.8) predicts power-law decay in time, but with a smaller exponent than non-

rotating turbulence: indeed, following [8], we have

(3.9) k(t) _ t -1/(C_2-1)

and the increase in C_2 due to rotation from 11/6 to 22/9 implies a reduction in the decay rate.

The model of rotating decaying turbulence implied by Eq. (3.8) has been advocated, for example in

[5], and more recently in [9]. The value C_2 = 22/9 in rotating turbulence can be compared to the values

C_2 _ 2.8 recommended in [5] and C_2 = 8/3 suggested in [9].

However, the available data is also consistent with the conclusion that in rotating turbulence, energy

transfer is suppressed completely, and energy becomes trapped in the largest scales of motion, where it

undergoes purely viscous decay. This picture, which is inconsistent with any kind of power-law decay, is

advocated for example by [10] and [11]. Which description of decaying rotating turbulence is correct remains

controversial; for now, we would like to explore some models which are consistent with the second viewpoint.

The derivation of Eq. (3.2) assumes that the time-scale in strongly rotating turbulence is the inverse

rotation rate. This idea suggests replacing Eq. (2.6) by

(3.10) _0__ = -_'f_
t_0

in the strong rotation limit. Eqs. (3.6) and (3.10) yield the e equation in the form

e (p _ e) - _'f_e(3.11) _ -- 2_

The rotation dependence found in Eq. (3.11) coincides with that of the well-known Bardina model [6]; we

argued previously [1] for the strong rotation limit of this model on the basis of simplified closure arguments.

Integration of the Bardina model for decaying turbulence in the strong rotation limit gives the results that

e decays exponentially in time, but that the kinetic energy approaches a constant; if viscosity is included in

the analysis, then the kinetic energy undergoes purely viscous decay.



Althoughtheseconclusionsareconsistentwith numericalandexperimentalobservations[10],the as-
sumptionEq. (3.10)underlyingthepresentderivationhasthe consequencethat the integralscalegrows
exponentially.Thiswascitedin [9]asevidenceagainsttheBardinamodelitself,although[11]arguedthat
quitedifferenttwo-pointbehaviorcanbeconsistentwiththesamesingle-pointmodel.

Thedifficultyis not somuchwith Schiestel'sformalism,but withapplyingEq. (3.10),an isotropic
result,to rotatingturbulence.In rotatingturbulence,theTaylor-Proudmantheoremforcesthelargescales
ofmotionto benearlytwo-dimensional.Consequently,theintegralscalesparallelandperpendicularto the
rotationaxisareunequal[10].

It is ratherdifficultto capturethiseffectin anyisotropicmodel.But supposethat wecombineEqs.
(3.6)and(2.9)to give

(3.12) k _ 1 _ I k0
k 2e 3ko

and simply postulate the large rotation limit of Eq. (3.11) for decaying turbulence

_ = -7'_(3.13)

Then we obtain

(3.14)

or equivalently,

(3.15)

]_ 1 ,_ lko
= -5 7 3 ko

]j1/3 = ]_(0)]_0(0)1/3¢__'_t/2

instead of the self-similarity postulate Eq. (2.11) for non-rotating turbulence. Unlike the argument leading to

Eq. (3.8), which like the derivation for isotropic turbulence assumes that the energy decay of the large scales

and the inertial range scales is linked by self-similarity, the present derivation instead allows the dynamics

of the large scales and the inertial range scales to be different.

The problem of decaying rotating turbulence is defined by the energy equation together with Eq. (3.13)

and either Eq. (3.14) or Eq. (3.15). Numerical integration will be required to solve these equations in

general, but it is evident that these equations are consistent with the limits

(3.16)

while

e=0

k=0

ko = const.

(3.17) no = const.

Thus, the kinetic energy in the inertial range vanishes, the energy transfer vanishes, but the kinetic energy

in the large scales and the integral scale both approach constants in the absence of viscosity.

Let us summarize the differences between the two dynamic descriptions of rotating decay. Power-law

decay, but with a reduced exponent, follows if the decay of both the large-scale energy and the inertial range

energy is linked through the self-similarity assumption Eq. (2.11). The alternative description, which leads

instead to Eqs. (3.16) and (3.17) allows the large-scale and inertial range energies to evolve independently.

The argument also implies that in the long-time limit, viscous dissipation and energy transfer are unequal:

energy transfer can vanish, but viscous dissipation is always nonzero.



4. Conclusions.Schiestel'sderivationof the etransportequationhasbeengeneralizedto rotating
turbulence.ByassumingthatthebasicscalerelationshipEq. (2.5)appliesto bothnon-rotatingandrotating
turbulence,weareledto theeequationin theformEq. (3.8). Thisequationimpliesalgebraicdecayin
timeof decayingrotatingturbulencewith a smallerdecayratethannon-rotatingturbulence.Replacing
Eq. (3.8)withtherotation-dependenthypothesisEq. (3.10)leadsessentiallyto theBardinamodel,which
impliesa completelydifferentdescriptionof rotatingdecay:thenonlinearenergytransfervanishesand
in theabsenceof viscouseffects,energyapproachesa constant.By ignoringthetwo-dimensionalityand
rotation-independenceof the largescales,thisargumentleadsto an incorrectdescriptionof the integral
scalein decayingrotatingturbulence.BymodifyingSchiestel'sargument,theBardinamodelisshownto be
consistentwithsaturationofthe integralscale.
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